您好、欢迎来到现金彩票网!
当前位置:2019跑狗图高清彩图 > 线性 >

如何判断一个系统是否是线性的

发布时间:2019-07-07 14:35 来源:未知 编辑:admin

  如果从系统状态空间表达式来观察,线性系统和非线性系统最明显的区别方法就是线性系统遵从叠加原理,而非线性系统不然。

  线性系统是一数学模型,是指用线性运算子组成的系统。相较于非线性系统,线性系统的特性比较简单。线性系统需满足线性的特性,若线性系统还满足非时变性(即系统的输入信号若延迟τ秒,那么得到的输出除了这τ秒延时以外是完全相同的),则称为线性时不变系统。

  线性系统是指同时满足叠加性与均匀性(又称为其次性)的系统。所谓叠加性是指当几个输入信号共同作用于系统时,总的输出等于每个输入单独作用时产生的输出之和;均匀性是指当输入信号增大若干倍时,输出也相应增大同样的倍数。对于线性连续控制系统,可以用线性的微分方程来表示。不满足叠加性和均匀性的系统即为非线性系统 。

  由于线性系统较容易处理,许多时候会将系统理想化或简化为线性系统。线性系统常应用在自动控制理论、信号处理及电信上。像无线通讯讯号在介质中的传播就可以用线性系统来模拟。

  线性时不变系统也称为线性定常系统或线性常系数系数,其特点是,描述系统动态过程的线性微分方程或差分方程中,每个系数都不随时间变化的常数。

  从实际的观点而言,线性时不变系统也是实际系统的一种理想化模型,实质上是对实际系统经过近似化和工程化处理后所导出的一类理想化系统。但是,由于线性时不变系统在研究上的简便性和基础性,并且为数很多的实际系统都可以在一定范围内足够精确地用线性时不变系统来代表,因此自然地成为线性系统理论中的主要研究对象。

  线性时变系统也称为线性变系数系统。其特点是,表征系统动态过程的线性微分方程或差分方程中,至少包含一个参数为随时间变化的函数。

  在现实世界中,由于系统外部和内部的原因,参数的变化是不可避免的,因此严格地说几乎所有系统都属于时变系统的范畴。但是,从研究的角度,只要参数随时间的变化远慢于系统状态随时间的变化,那么就可将系统按时不变系统来研究,由此而导致的误差完全可达到忽略不计的程度。

  线性时不变系统和线性时变系统在系统描述上的这种区别,既决定了两者在运动状态特性上的实质性差别,也决定了两者在分析和综合方法的复杂程度上的重要差别。

  事实上,比之线性时不变系统,对线性时变系统的研究要远为复杂得多,也远为不成熟得多。

  展开全部先线性运算再经过系统=先经过系统再线性运算是线性系统先时移再经过系统=先经过系统再时移为时不变系统时间趋于无穷大时系统值有界则为稳定的系统,或者对连续系统S域变换,离散系统Z域变换,H(s)极点均在左半平面则稳定,H(z)极点均在单位圆内部则稳定。一般的常微分差分方程都是LTI,输入输出有关于t的尺度变换则时变,微分差分方程的系数为关于时间t的函数也时变,就这样了。。

  如果从系统状态空间表达式来观察,线性系统和非线性系统最明显的区别方法就是线性系统遵从叠加原理,而非线性系统不然。 所谓叠加原理举个例子就是: f(x)=2x,f(y)=2y,f(x+y)=2(x+y)=2x+2y=f(x)+f(y) 举个反例: f(x)=2x^2,f(y)=2y^2,f(x)+f(y)=2(x^2+y^2),但f(x+y)=2(x+y)^2,两个显然不等。 换句话说,线性系统的表达式中只有状态变量的一次项,高次、三角函数以及常数项都没有,只要有任意一个非线性环节就是非线性系统。

  展开全部从系统状态空间表达式来观察,线性系统和非线性系统最明显的区别方法就是线性系统遵从叠加原理,而非线性系统不然。所谓叠加原理举个例子就是: f(x)=2x,f(y)=2y,f(x+y)=2(x+y)=2x+2y=f(x)+f(y)

  举个反例: f(x)=2x^2,f(y)=2y^2,f(x)+f(y)=2(x^2+y^2),但f(x+y)=2(x+y)^2,两个显然不等。 换句话说,线性系统的表达式中只有状态变量的一次项,高次、三角函数以及常数项都没有,只要有任意一个非线性环节就是非线性系统。

  线性系统是一数学模型,是指用线性运算子组成的系统。相较于非线性系统,线性系统的特性比较简单。线性系统需满足线性的特性,若线性系统还满足非时变性(即系统的输入信号若延迟τ秒,那么得到的输出除了这τ秒延时以外是完全相同的),则称为线性时不变系统。

  2. 线性系统的表达式中只有状态变量的一次项,高次、三角函数以及常数项都没有,只要有任意一个非线性环节就是非线. 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统。一个由线性元部件所组成的系统必是线性系统。但是,相反的命题在某些情况下可能不成立。

http://lusobeat.com/xianxing/327.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有