您好、欢迎来到现金彩票网!
当前位置:双彩网 > 线性 >

如何用秩判断线性相关? 线性代数问题

发布时间:2019-07-03 22:44 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  设矩阵A为m*n阶矩阵。矩阵A的秩为r,若r=n,则矩阵列向量组线性无关,若rn,则矩阵列向量组线性相关。同理若r=m,则矩阵行向量组线性无关,若rm,则矩阵行向量组线性相关。

  包含零向量的任何向量组是线性相关的。含有相同向量的向量组必线性相关。增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)

  若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。

  正比例关系是线性关系中的特例,反比例关系不是线性关系。更通俗一点讲,如果把这两个变量分别作为点的横坐标与纵坐标。

  其图象是平面上的一条直线,则这两个变量之间的关系就是线性关系。即如果可以用一个二元一次方程来表达两个变量之间关系的话,这两个变量之间的关系称为线性关系。

http://lusobeat.com/xianxing/301.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有